Source code for improver.cli

# (C) Crown Copyright, Met Office. All rights reserved.
#
# This file is part of 'IMPROVER' and is released under the BSD 3-Clause license.
# See LICENSE in the root of the repository for full licensing details.
"""init for cli and clize"""

import pathlib
import shlex
import time
from collections import OrderedDict
from functools import partial

import clize
from clize import parameters
from clize.help import ClizeHelp, HelpForAutodetectedDocstring
from clize.parser import value_converter
from clize.runner import Clize
from sigtools.wrappers import decorator

# Imports are done in their functions to make calls to -h quicker.
# selected clize imports/constants

IGNORE = clize.Parameter.IGNORE
LAST_OPTION = clize.Parameter.LAST_OPTION
REQUIRED = clize.Parameter.REQUIRED
UNDOCUMENTED = clize.Parameter.UNDOCUMENTED


# help helpers


[docs] def docutilize(obj): """Convert Numpy or Google style docstring into reStructuredText format. Args: obj (str or object): Takes an object and changes it's docstrings to a reStructuredText format. Returns: str or object: A converted string or an object with replaced docstring depending on the type of the input. """ from inspect import cleandoc, getdoc from sphinx.ext.napoleon.docstring import GoogleDocstring, NumpyDocstring if isinstance(obj, str): doc = cleandoc(obj) else: doc = getdoc(obj) doc = str(NumpyDocstring(doc)) doc = str(GoogleDocstring(doc)) doc = doc.replace(":exc:", "") doc = doc.replace(":data:", "") doc = doc.replace(":keyword", ":param") doc = doc.replace(":kwtype", ":type") if isinstance(obj, str): return doc obj.__doc__ = doc return obj
[docs] class HelpForNapoleonDocstring(HelpForAutodetectedDocstring): """Subclass to add support for google style docstrings"""
[docs] def add_docstring(self, docstring, *args, **kwargs): """Adds the updated docstring.""" docstring = docutilize(docstring) super().add_docstring(docstring, *args, **kwargs)
[docs] class DocutilizeClizeHelp(ClizeHelp): """Subclass to build Napoleon docstring from subject.""" def __init__(self, subject, owner, builder=HelpForNapoleonDocstring.from_subject): super().__init__(subject, owner, builder)
# input handling
[docs] class ObjectAsStr(str): """Hide object under a string to pass it through Clize parser.""" __slots__ = ("original_object",) def __new__(cls, obj, name=None): if isinstance(obj, cls): # pass object through if already wrapped return obj if name is None: name = cls.obj_to_name(obj) self = str.__new__(cls, name) self.original_object = obj return self def __hash__(self): # make sure our hash doesn't clash with normal string hash return super().__hash__(self) ^ hash(type(self))
[docs] @staticmethod def obj_to_name(obj, cls=None): """Helper function to create the string.""" if isinstance(obj, str): return obj if cls is None: cls = type(obj) try: obj_id = hash(obj) except TypeError: obj_id = id(obj) return "<%s.%s@%i>" % (cls.__module__, cls.__name__, obj_id)
[docs] def maybe_coerce_with(converter, obj, **kwargs): """Apply converter if str, pass through otherwise.""" obj = getattr(obj, "original_object", obj) return converter(obj, **kwargs) if isinstance(obj, str) else obj
[docs] @value_converter def inputcube(to_convert): """Loads cube from file or returns passed object. Args: to_convert (string or iris.cube.Cube): File name or Cube object. Returns: Loaded cube or passed object. """ from improver.utilities.load import load_cube return maybe_coerce_with(load_cube, to_convert)
[docs] @value_converter def inputcube_nolazy(to_convert): """Loads cube from file or returns passed object. Where a load is performed, it will not have lazy data. Args: to_convert (string or iris.cube.Cube): File name or Cube object. Returns: Loaded cube or passed object. """ from improver.utilities.load import load_cube if getattr(to_convert, "has_lazy_data", False): # Realise data if lazy to_convert.data return maybe_coerce_with(load_cube, to_convert, no_lazy_load=True)
[docs] @value_converter def inputcubelist(to_convert): """Loads a cubelist from file or returns passed object. Args: to_convert (string or iris.cube.CubeList): File name or CubeList object. Returns: Loaded cubelist or passed object. """ from improver.utilities.load import load_cubelist return maybe_coerce_with(load_cubelist, to_convert)
[docs] @value_converter def inputjson(to_convert): """Loads json from file or returns passed object. Args: to_convert (string or dict): File name or json dictionary. Returns: Loaded json dictionary or passed object. """ from improver.utilities.cli_utilities import load_json_or_none return maybe_coerce_with(load_json_or_none, to_convert)
[docs] @value_converter def comma_separated_list(to_convert): """Converts comma separated string to list or returns passed object. Args: to_convert (string or list) comma separated string or list Returns: list """ return maybe_coerce_with(lambda s: s.split(","), to_convert)
[docs] @value_converter def comma_separated_list_of_float(to_convert): """Converts comma separated string to list of floats or returns passed object. Args: to_convert (string or list) comma separated string or list Returns: list """ return maybe_coerce_with( lambda string: [float(s) for s in string.split(",")], to_convert )
[docs] @value_converter def inputpath(to_convert): """Converts string paths to pathlib Path objects Args: to_convert (string or pathlib.Path): path represented as string Returns: (pathlib.Path): Path object """ return maybe_coerce_with(pathlib.Path, to_convert)
[docs] @value_converter def inputdatetime(to_convert): """Converts string to datetime or returns passed object. Args: to_convert (string or datetime): datetime represented as string of the format YYYYMMDDTHHMMZ Returns: (datetime): datetime object """ from improver.utilities.temporal import cycletime_to_datetime return maybe_coerce_with(cycletime_to_datetime, to_convert)
[docs] def create_constrained_inputcubelist_converter(*constraints): """Makes function that the input constraints are used in a loop. The function is a @value_converter, this means it is used by clize to convert strings into objects. This is a way of not using the IMPROVER load_cube which will try to merge cubes. Iris load on the other hand won't deal with meta data properly. So an example is if you wanted to load an X cube and a Y cube from a cubelist of 2. You call this function with a list of constraints. These cubes get loaded and returned as a CubeList. Args: *constraints (tuple of str or callable or iris.Constraint): Constraints to be used in extracting the required cubes. Each constraint must match exactly one cube and extracted cubes will be sorted to match their order. A constraint can be an iris.Constraint object or a callable or cube name that can be used to construct one. Returns: callable: A function with the constraints used for a list comprehension. """ @value_converter def constrained_inputcubelist_converter(to_convert): """Passes the cube and constraints onto maybe_coerce_with. Args: to_convert (str or iris.cube.CubeList): A CubeList or a filename to be loaded into a CubeList. Returns: iris.cube.CubeList: The loaded cubelist of constrained cubes. """ from iris import Constraint from iris.cube import CubeList from improver.utilities.load import load_cubelist cubelist = maybe_coerce_with(load_cubelist, to_convert) return CubeList( cubelist.extract_cube( Constraint(cube_func=constr) if callable(constr) else constr ) for constr in constraints ) return constrained_inputcubelist_converter
# output handling
[docs] @decorator def with_output( wrapped, *args, output=None, pass_through_output=False, compression_level=1, least_significant_digit: int = None, **kwargs, ): """Add `output` keyword only argument. Add `compression_level` option. Add `least_significant_digit` option. This is used to add extra `output`, `compression_level` and `least_significant_digit` CLI options. If `output` is provided, it saves the result of calling `wrapped` to file and returns None, otherwise it returns the result. If `compression_level` is provided, it compresses the data with the provided compression level (or not, if `compression_level` 0). If `least_significant_digit` provided, it will quantize the data to a certain number of significant figures. Args: wrapped (obj): The function to be wrapped. output (str, optional): Output file name. If not supplied, the output object will be printed instead. pass_through_output (bool): Pass through the output object even if saved to file. Used in pipelines of commands if intermediate output needs to be saved. compression_level (int): Will set the compression level (1 to 9), or disable compression (0). least_significant_digit (int): If specified will truncate the data to a precision given by 10**(-least_significant_digit), e.g. if least_significant_digit=2, then the data will be quantized to a precision of 0.01 (10**(-2)). See http://www.esrl.noaa.gov/psd/data/gridded/conventions/cdc_netcdf_standard.shtml for details. When used with `compression level`, this will result in lossy compression. Returns: Result of calling `wrapped` or None if `output` is given. """ import joblib from iris.cube import Cube, CubeList from improver.utilities.save import save_netcdf result = wrapped(*args, **kwargs) # If result is a Cube or CubeList or an iterable containing only Cubes, # save as netCDF if ( output and result and ( (isinstance(result, (Cube, CubeList))) or all([isinstance(x, Cube) for x in result]) ) ): save_netcdf(result, output, compression_level, least_significant_digit) if pass_through_output: return ObjectAsStr(result, output) return elif output and result: # If output is set and result exists but is not a Cube, save it as a pickle file joblib.dump(result, output, compress=compression_level) return return result
# cli object creation
[docs] def clizefy(obj=None, helper_class=DocutilizeClizeHelp, **kwargs): """Decorator for creating CLI objects.""" if obj is None: return partial(clizefy, helper_class=helper_class, **kwargs) if hasattr(obj, "cli"): return obj if not callable(obj): return Clize.get_cli(obj, **kwargs) return Clize.keep(obj, helper_class=helper_class, **kwargs)
# help command
[docs] @clizefy(help_names=()) def improver_help(prog_name: parameters.pass_name, command=None, *, usage=False): """Show command help.""" prog_name = prog_name.split()[0] args = filter(None, [command, "--help", usage and "--usage"]) result = execute_command(SUBCOMMANDS_DISPATCHER, prog_name, *args) if not command and usage: result = "\n".join( line for line in result.splitlines() if not line.endswith("--help [--usage]") ) return result
[docs] def command_executor(*argv, verbose=False, dry_run=False): """Common entry point for straight command execution.""" return execute_command( SUBCOMMANDS_DISPATCHER, *argv, verbose=verbose, dry_run=dry_run )
[docs] def _cli_items(): """Dynamically discover CLIs.""" import importlib import pkgutil from improver.cli import __path__ as improver_cli_pkg_path yield ("help", improver_help) for minfo in pkgutil.iter_modules(improver_cli_pkg_path): mod_name = minfo.name if mod_name != "__main__": mcli = importlib.import_module("improver.cli." + mod_name) yield (mod_name, clizefy(mcli.process))
SUBCOMMANDS_TABLE = OrderedDict(sorted(_cli_items())) # main CLI object with subcommands SUBCOMMANDS_DISPATCHER = clizefy( SUBCOMMANDS_TABLE, description="""IMPROVER NWP post-processing toolbox""", footnotes="""See also improver --help for more information.""", ) # IMPROVER top level main
[docs] def unbracket(args): """Convert input list with bracketed items into nested lists. >>> unbracket("foo [ bar a b ] [ baz c ] -o z".split()) ['foo', ['bar', 'a', 'b'], ['baz', 'c'], '-o', 'z'] """ outargs = [] stack = [] mismatch_msg = "Mismatched bracket at position %i." for i, arg in enumerate(args): if arg == "[": stack.append(outargs) outargs = [] elif arg == "]": if not stack: raise ValueError(mismatch_msg % i) stack[-1].append(outargs) outargs = stack.pop() else: outargs.append(arg) if stack: raise ValueError(mismatch_msg % len(args)) return outargs
[docs] class TimeIt: def __init__(self, verbose=False): self._verbose = verbose self._elapsed = None self._start = None def __enter__(self): self._start = time.perf_counter() return self def __exit__(self, *args): self._elapsed = time.perf_counter() - self._start if self._verbose: print(str(self)) @property def elapsed(self): """Return elapsed time in seconds.""" return self._elapsed def __str__(self): """Print elapsed time in seconds.""" return f"Run-time: {self._elapsed}s"
[docs] def execute_command(dispatcher, prog_name, *args, verbose=False, dry_run=False): """Common entry point for command execution.""" args = list(args) for i, arg in enumerate(args): if isinstance(arg, (list, tuple)): # process nested commands recursively arg = execute_command( dispatcher, prog_name, *arg, verbose=verbose, dry_run=dry_run ) if isinstance(arg, pathlib.PurePath): arg = str(arg) elif not isinstance(arg, str): arg = ObjectAsStr(arg) args[i] = arg msg = " ".join([shlex.quote(x) for x in (prog_name, *args)]) if dry_run: if verbose: print(msg) return args with TimeIt() as timeit: result = dispatcher(prog_name, *args) if verbose: print(f"{timeit}; {msg}") if result is not None: print(ObjectAsStr.obj_to_name(result)) return result
[docs] @clizefy() def main( prog_name: parameters.pass_name, command: LAST_OPTION, *args, profile: value_converter(lambda _: _, name="FILENAME") = None, # noqa: F821 memprofile: value_converter(lambda _: _, name="FILENAME") = None, # noqa: F821 verbose=False, dry_run=False, ): """IMPROVER NWP post-processing toolbox Results from commands can be passed into file-like arguments of other commands by surrounding them by square brackets:: improver command [ command ... ] ... Spaces around brackets are mandatory. Args: prog_name: The program name from argv[0]. command (str): Command to execute args (tuple): Command arguments profile (str): If given, will write profiling to the file given. To write to stdout, use a hyphen (-) memprofile (str): Creates 2 files by adding a suffix to the provided arguemnt - a tracemalloc snapshot at the point of highest memory consumption of your program (suffixed with _SNAPSHOT) and a track of the maximum memory used by your program over time (suffixed with _MAX_TRACKER). verbose (bool): Print executed commands dry_run (bool): Print commands to be executed See improver help [--usage] [command] for more information on available command(s). """ args = unbracket(args) exec_cmd = execute_command if profile is not None: from improver.profile import profile_hook_enable profile_hook_enable(dump_filename=None if profile == "-" else profile) if memprofile is not None: from improver.memprofile import memory_profile_decorator exec_cmd = memory_profile_decorator(exec_cmd, memprofile) result = exec_cmd( SUBCOMMANDS_DISPATCHER, prog_name, command, *args, verbose=verbose, dry_run=dry_run, ) return result
[docs] def run_main(argv=None): """Overrides argv[0] to be 'improver' then runs main. Args: argv (list of str): Arguments that were from the command line. """ import sys from clize import run # clize help shows module execution as `python -m improver.cli` # override argv[0] and pass it explicitly in order to avoid this # so that the help command reflects the way that we call improver. if argv is None: argv = sys.argv[:] argv[0] = "improver" run(main, args=argv)