# (C) Crown Copyright, Met Office. All rights reserved.
#
# This file is part of 'IMPROVER' and is released under the BSD 3-Clause license.
# See LICENSE in the root of the repository for full licensing details.
"""
This module defines the optical flow velocity calculation and extrapolation
classes for advection nowcasting.
"""
import warnings
from typing import List, Optional, Tuple
import iris
import numpy as np
from iris.cube import Cube, CubeList
from iris.exceptions import (
CoordinateCollapseError,
CoordinateNotFoundError,
InvalidCubeError,
)
from numpy import ndarray
from scipy import ndimage, signal
from improver import BasePlugin
from improver.nowcasting.pysteps_advection import PystepsExtrapolate
from improver.nowcasting.utilities import ApplyOrographicEnhancement
from improver.utilities.cube_checker import check_for_x_and_y_axes
from improver.utilities.cube_manipulation import collapsed
from improver.utilities.spatial import (
calculate_grid_spacing,
check_if_grid_is_equal_area,
)
[docs]
def generate_optical_flow_components(
cube_list: CubeList, ofc_box_size: int, smart_smoothing_iterations: int
) -> Tuple[Cube, Cube]:
"""
Calculate the mean optical flow components between the cubes in cube_list
Args:
cube_list:
Cubelist from which to calculate optical flow velocities
ofc_box_size:
Size of square 'box' (in grid spaces) within which to solve
the optical flow equations
smart_smoothing_iterations:
Number of iterations to perform in enforcing smoothness constraint
for optical flow velocities
Returns:
- Cube of x-advection velocities u_mean
- Cube of y-advection velocities v_mean
"""
cube_list.sort(key=lambda x: x.coord("time").points[0])
time_coord = cube_list[-1].coord("time")
ofc_plugin = OpticalFlow(iterations=smart_smoothing_iterations)
u_cubes = iris.cube.CubeList([])
v_cubes = iris.cube.CubeList([])
for older_cube, newer_cube in zip(cube_list[:-1], cube_list[1:]):
ucube, vcube = ofc_plugin(older_cube, newer_cube, boxsize=ofc_box_size)
u_cubes.append(ucube)
v_cubes.append(vcube)
# average optical flow velocity components
def _calculate_time_average(wind_cubes, time_coord):
"""Average input cubelist over time"""
cube = wind_cubes.merge_cube()
try:
mean = collapsed(cube, "time", iris.analysis.MEAN)
except CoordinateCollapseError:
# collapse will fail if there is only one time point
return cube
mean.coord("time").points = time_coord.points
mean.coord("time").units = time_coord.units
return mean
u_mean = _calculate_time_average(u_cubes, time_coord)
v_mean = _calculate_time_average(v_cubes, time_coord)
return u_mean, v_mean
[docs]
def generate_advection_velocities_from_winds(
cubes: CubeList, background_flow: CubeList, orographic_enhancement: Cube
) -> CubeList:
"""Generate advection velocities as perturbations from a non-zero background
flow
Args:
cubes:
Two rainfall observations separated by a time difference
background_flow:
u- and v-components of a non-zero background flow field
orographic_enhancement:
Field containing orographic enhancement data valid for both
input cube times
Returns:
u- and v- advection velocities
"""
cubes.sort(key=lambda x: x.coord("time").points[0])
lead_time_seconds = (
cubes[1].coord("time").cell(0).point - cubes[0].coord("time").cell(0).point
).total_seconds()
lead_time_minutes = int(lead_time_seconds / 60)
# advect earlier cube forward to match time of later cube, using steering flow
advected_cube = PystepsExtrapolate(lead_time_minutes, lead_time_minutes)(
cubes[0], *background_flow, orographic_enhancement
)[-1]
# calculate velocity perturbations required to match forecast to observation
cube_list = ApplyOrographicEnhancement("subtract")(
[advected_cube, cubes[1]], orographic_enhancement
)
perturbations = OpticalFlow(data_smoothing_radius_km=8.0, iterations=20)(
*cube_list, boxsize=18
)
# sum perturbations and original flow field to get advection velocities
total_advection = _perturb_background_flow(background_flow, perturbations)
return total_advection
[docs]
def _perturb_background_flow(
background: List[Cube], adjustment: List[Cube]
) -> CubeList:
"""Add a background flow to a flow adjustment field. The returned cubelist
has the units of the adjustment field.
Args:
background
adjustment
Returns:
The adjusted CubeList.
"""
for flow, adj in zip(background, adjustment):
flow.convert_units(adj.units)
perturbed_field = np.where(
np.isfinite(adj.data), adj.data + flow.data, flow.data
)
adj.data = perturbed_field.astype(adj.dtype)
return iris.cube.CubeList(adjustment)
[docs]
class OpticalFlow(BasePlugin):
"""
Class to calculate advection velocities along two orthogonal spatial axes
from time-separated fields using an optical flow algorithm
References:
Bowler, N., Pierce, C. and Seed, A. 2004: Development of a
precipitation nowcasting algorithm based upon optical flow
techniques. Journal of Hydrology, 288, 74-91.
Friedrich, Martina M. 2017: STEPS investigation summary. Internal
Met Office Document.
"""
[docs]
def __init__(
self,
data_smoothing_method: str = "box",
data_smoothing_radius_km: float = 14.0,
iterations: int = 100,
) -> None:
"""
Initialise the class with smoothing parameters for estimating gridded
u- and v- velocities via optical flow.
Args:
data_smoothing_method:
Smoothing method to be used on input fields before estimating
partial derivatives. Can be square 'box' (as used in STEPS) or
circular 'kernel' (used in post-calculation smoothing).
data_smoothing_radius:
The radius, in km, of the kernel used to smooth the input data fields
before calculating optical flow. 14 km is suitable for precipitation
rate data separated by a 15 minute time step. If the time step is
greater than 15 minutes, this radius is increased by the "process"
method.
iterations:
Number of iterations to perform in post-calculation smoothing.
The minimum value for good convergence is 20 (Bowler et al. 2004).
Raises:
ValueError:
If iterations < 20
"""
if iterations < 20:
raise ValueError(
"Got {} iterations; minimum requirement 20 " "iterations".format(
iterations
)
)
self.data_smoothing_radius_km = data_smoothing_radius_km
self.data_smoothing_method = data_smoothing_method
# Set parameters for velocity calculation and "smart smoothing"
self.iterations = iterations
self.point_weight = 0.1
# Initialise input data fields and shape
self.data1 = None
self.data2 = None
self.shape = None
def __repr__(self) -> str:
"""Represent the plugin instance as a string."""
result = (
"<OpticalFlow: data_smoothing_radius_km: {}, "
"data_smoothing_method: {}, iterations: {}, "
"point_weight: {}>"
)
return result.format(
self.data_smoothing_radius_km,
self.data_smoothing_method,
self.iterations,
self.point_weight,
)
[docs]
@staticmethod
def _get_advection_time(cube1: Cube, cube2: Cube) -> None:
"""Get time over which the advection has occurred, in seconds, using the
difference in time or forecast reference time between input cubes"""
time_diff_seconds = (
cube2.coord("time").cell(0).point - cube1.coord("time").cell(0).point
).total_seconds()
time_diff_seconds = int(time_diff_seconds)
if time_diff_seconds == 0:
# second cube should be an observation; first cube should have a
# non-zero forecast period which describes the advection time
if (
cube2.coords("forecast_period")
and cube2.coord("forecast_period").points[0] != 0
):
raise InvalidCubeError(
"Second input cube must be a current observation"
)
# get the time difference from the first cube's forecast period
fp_coord = cube1.coord("forecast_period").copy()
fp_coord.convert_units("seconds")
(time_diff_seconds,) = fp_coord.points
if time_diff_seconds <= 0:
error_msg = "Expected positive time difference cube2 - cube1: got {} s"
raise InvalidCubeError(error_msg.format(time_diff_seconds))
return time_diff_seconds
[docs]
def _get_smoothing_radius(
self, time_diff_seconds: float, grid_length_km: float
) -> float:
"""Calculate appropriate data smoothing radius in grid squares.
If time difference is greater 15 minutes, increase data smoothing
radius in km so that larger advection displacements can be resolved.
"""
if time_diff_seconds > 900:
data_smoothing_radius_km = self.data_smoothing_radius_km * (
time_diff_seconds / 900.0
)
else:
data_smoothing_radius_km = self.data_smoothing_radius_km
# calculate smoothing radius in integer grid squares
data_smoothing_radius = int(data_smoothing_radius_km / grid_length_km)
# fail verbosely if data smoothing radius is too small and will
# trigger silent failures downstream
if data_smoothing_radius < 3:
msg = "Input data smoothing radius {} too small (minimum 3 grid squares)"
raise ValueError(msg.format(data_smoothing_radius))
return data_smoothing_radius
[docs]
@staticmethod
def interp_to_midpoint(data: ndarray, axis: Optional[int] = None) -> ndarray:
"""
Interpolates to the x-y mid-point resulting in a new grid with
dimensions reduced in length by one. If axis is not None, the
interpolation is performed only over the one spatial axis
specified. If the input array has an axis of length 1, the
attempt to interpolate returns an empty array: [].
Args:
data:
2D gridded data (dimensions M x N)
axis:
Optional (0 or 1): average over 2 adjacent points along the
specified axis, rather than all 4 corners
Returns:
2D gridded interpolated average (dimensions M-1 x N-1 if
axis=None; M-1 x N if axis=0; M x N-1 if axis=1)
"""
if axis is None:
midpoints = 0.25 * (
data[1:, :-1] + data[:-1, 1:] + data[1:, 1:] + data[:-1, :-1]
)
elif axis == 0:
midpoints = 0.5 * (data[:-1, :] + data[1:, :])
elif axis == 1:
midpoints = 0.5 * (data[:, :-1] + data[:, 1:])
return midpoints
[docs]
def _partial_derivative_spatial(self, axis: int = 0) -> ndarray:
"""
Calculate the average over the two class data fields of one spatial
derivative, averaged over the other spatial dimension. Pad with zeros
in both dimensions, then smooth to the original grid shape.
Args:
axis:
Axis over which to calculate the spatial derivative (0 or 1)
Returns:
Smoothed spatial derivative
"""
outdata = []
for data in [self.data1, self.data2]:
diffs = self.interp_to_midpoint(np.diff(data, axis=axis), axis=1 - axis)
outdata.append(diffs)
smoothed_diffs = np.zeros(
[self.shape[0] + 1, self.shape[1] + 1], dtype=np.float32
)
smoothed_diffs[1:-1, 1:-1] = 0.5 * (outdata[0] + outdata[1])
return self.interp_to_midpoint(smoothed_diffs)
[docs]
def _partial_derivative_temporal(self) -> ndarray:
"""
Calculate the partial derivative of two fields over time. Take the
difference between time-separated fields data1 and data2, average
over the two spatial dimensions, regrid to a zero-padded output
array, and smooth to the original grid shape.
Returns:
Smoothed temporal derivative
"""
tdiff = self.data2 - self.data1
smoothed_diffs = np.zeros(
[self.shape[0] + 1, self.shape[1] + 1], dtype=np.float32
)
smoothed_diffs[1:-1, 1:-1] = self.interp_to_midpoint(tdiff)
return self.interp_to_midpoint(smoothed_diffs)
[docs]
def _make_subboxes(self, field: ndarray) -> Tuple[List[ndarray], ndarray]:
"""
Generate a list of non-overlapping "boxes" of size self.boxsize**2
from the input field, along with weights based on data values at times
1 and 2. The final boxes in the list will be smaller if the size of
the data field is not an exact multiple of "boxsize".
Note that the weights calculated below are valid for precipitation
rates in mm/hr. This is a result of the constant 0.8 that is used,
noting that in the source paper a value of 0.75 is used; see equation
8. in Bowler et al. 2004.
Args:
field:
Input field (partial derivative)
Returns:
- List of numpy.ndarrays of size boxsize*boxsize containing
slices of data from input field.
- 1D numpy array containing weights values associated with
each listed box.
"""
boxes = []
weights = []
weighting_factor = 0.5 / self.boxsize**2.0
for i in range(0, field.shape[0], self.boxsize):
for j in range(0, field.shape[1], self.boxsize):
boxes.append(field[i : i + self.boxsize, j : j + self.boxsize])
weight = weighting_factor * (
(self.data1[i : i + self.boxsize, j : j + self.boxsize]).sum()
+ (self.data2[i : i + self.boxsize, j : j + self.boxsize]).sum()
)
weight = 1.0 - np.exp(-1.0 * weight / 0.8)
weights.append(weight)
weights = np.array(weights, dtype=np.float32)
weights[weights < 0.01] = 0
return boxes, weights
[docs]
def _box_to_grid(self, box_data: ndarray) -> ndarray:
"""
Regrids calculated displacements from "box grid" (on which OFC
equations are solved) to input data grid.
Args:
box_data:
Displacement of subbox on box grid
Returns:
Displacement on original data grid
"""
grid_data = np.repeat(
np.repeat(box_data, self.boxsize, axis=0), self.boxsize, axis=1
)
grid_data = grid_data[: self.shape[0], : self.shape[1]].astype(np.float32)
return grid_data
[docs]
@staticmethod
def makekernel(radius: int) -> ndarray:
"""
Make a pseudo-circular kernel of radius "radius" to smooth an input
field (used in self.smoothing() with method='kernel'). The output
array is zero-padded, so a radius of 1 gives the kernel:
::
[[ 0. 0. 0.]
[ 0. 1. 0.]
[ 0. 0. 0.]]
which has no effect on the input field. The smallest valid radius
of 2 gives the kernel:
::
[[ 0. 0. 0. 0. 0. ]
[ 0. 0.0625 0.125 0.0625 0. ]
[ 0. 0.125 0.25 0.125 0. ]
[ 0. 0.0625 0.125 0.0625 0. ]
[ 0. 0. 0. 0. 0. ]]
Args:
radius:
Kernel radius or half box size for smoothing
Returns:
Kernel to use for generating a smoothed field.
"""
kernel_1d = 1 - np.abs(np.linspace(-1, 1, radius * 2 + 1))
kernel_2d = kernel_1d.reshape(radius * 2 + 1, 1) * kernel_1d.reshape(
1, radius * 2 + 1
)
kernel_2d /= kernel_2d.sum()
return kernel_2d
[docs]
def smooth(self, field: ndarray, radius: int, method: str = "box") -> ndarray:
"""
Smoothing method using a square ('box') or circular kernel. Kernel
smoothing with a radius of 1 has no effect.
Smoothing with the "box" argument is equivalent to the method
in equation 7 in Bowler et al. 2004.
Args:
field:
Input field to be smoothed
radius:
Kernel radius or half box size for smoothing
method:
Method to use: 'box' (as in STEPS) or 'kernel'
Returns:
Smoothed data on input-shaped grid
"""
if method == "kernel":
kernel = self.makekernel(radius)
smoothed_field = signal.convolve2d(
field, kernel, mode="same", boundary="symm"
)
elif method == "box":
smoothed_field = ndimage.filters.uniform_filter(
field, size=radius * 2 + 1, mode="nearest"
)
# Ensure the dtype does not change.
smoothed_field = smoothed_field.astype(field.dtype)
return smoothed_field
[docs]
def _smart_smooth(
self, vel_point: ndarray, vel_iter: ndarray, weights: ndarray
) -> ndarray:
"""
Performs a single iteration of "smart smoothing" over a point and its
neighbours as implemented in STEPS. This smoothing (through the
"weights" argument) ignores advection displacements which are
identically zero, as these are assumed to occur only where there is no
data structure from which to calculate displacements.
Args:
vel_point:
Original unsmoothed data
vel_iter:
Latest iteration of smart-smoothed displacement
weights:
Weight of each grid point for averaging
Returns:
Next iteration of smart-smoothed displacement
"""
# define kernel for neighbour weighting
neighbour_kernel = (
np.array([[0.5, 1, 0.5], [1.0, 0, 1.0], [0.5, 1, 0.5]]) / 6.0
).astype(np.float32)
# smooth input data and weights fields
vel_neighbour = ndimage.convolve(weights * vel_iter, neighbour_kernel)
neighbour_weights = ndimage.convolve(weights, neighbour_kernel)
# initialise output data from latest iteration
vel = ndimage.convolve(vel_iter, neighbour_kernel)
# create "point" and "neighbour" validity masks using original and
# kernel-smoothed weights
pmask = abs(weights) > 0
nmask = abs(neighbour_weights) > 0
# where neighbouring points have weight, set up a "background" of
# weighted average neighbouring values
vel[nmask] = vel_neighbour[nmask] / neighbour_weights[nmask]
# where a point has weight, calculate a weighted sum of the original
# (uniterated) point value and its smoothed neighbours
nweight = 1.0 - self.point_weight
pweight = self.point_weight * weights
norm = nweight * neighbour_weights + pweight
vel[pmask] = (
vel_neighbour[pmask] * nweight + vel_point[pmask] * pweight[pmask]
) / norm[pmask]
return vel
[docs]
def _smooth_advection_fields(self, box_data: ndarray, weights: ndarray) -> ndarray:
"""
Performs iterative "smart smoothing" of advection displacement fields,
accounting for zeros and reducting their weight in the final output.
Then regrid from "box grid" (on which OFC equations are solved) to
input data grid, and perform one final pass simple kernel smoothing.
This is equivalent to applying the smoothness constraint defined in
Bowler et al. 2004, equations 9-11.
Args:
box_data:
Displacements on box grid (modified by this function)
weights:
Weights for smart smoothing
Returns:
Smoothed displacement vectors on input data grid
"""
v_orig = np.copy(box_data)
# iteratively smooth umat and vmat
for _ in range(self.iterations):
box_data = self._smart_smooth(v_orig, box_data, weights)
# reshape smoothed box velocity arrays to match input data grid
grid_data = self._box_to_grid(box_data)
# smooth regridded velocities to remove box edge discontinuities
# this will fail if self.boxsize < 3
kernelsize = int(self.boxsize / 3)
grid_data = self.smooth(grid_data, kernelsize, method="kernel")
return grid_data
[docs]
@staticmethod
def solve_for_uv(deriv_xy: ndarray, deriv_t: ndarray) -> ndarray:
"""
Solve the system of linear simultaneous equations for u and v using
matrix inversion (equation 19 in STEPS investigation summary document
by Martina M. Friedrich 2017 (available internally at the Met Office)).
This is frequently singular, eg in the presence of too many zeroes.
In these cases, the function returns displacements of 0.
Args:
deriv_xy:
2-column matrix containing partial field derivatives d/dx
(first column) and d/dy (second column)
deriv_t:
1-column matrix containing partial field derivatives d/dt
Returns:
2-column matrix (u, v) containing scalar displacement values
"""
deriv_t = deriv_t.reshape([deriv_t.size, 1])
m_to_invert = (deriv_xy.transpose()).dot(deriv_xy)
try:
m_inverted = np.linalg.inv(m_to_invert)
except np.linalg.LinAlgError:
# if matrix is not invertible, set velocities to zero
velocity = np.array([0, 0])
else:
scale = (deriv_xy.transpose()).dot(deriv_t)
velocity = -m_inverted.dot(scale)[:, 0]
return velocity
[docs]
@staticmethod
def extreme_value_check(umat: ndarray, vmat: ndarray, weights: ndarray) -> None:
"""
Checks for displacement vectors that exceed 1/3 of the dimensions
of the input data matrix. Replaces these extreme values and their
smoothing weights with zeros. Modifies ALL input arrays in place.
Args:
umat:
Displacement vectors in the x direction
vmat:
Displacement vectors in the y direction
weights:
Weights for smart smoothing
"""
flag = (np.abs(umat) + np.abs(vmat)) > vmat.shape[0] / 3.0
umat[flag] = 0
vmat[flag] = 0
weights[flag] = 0
[docs]
def calculate_displacement_vectors(
self, partial_dx: ndarray, partial_dy: ndarray, partial_dt: ndarray
) -> Tuple[ndarray, ndarray]:
"""
This implements the OFC algorithm, assuming all points in a box with
"self.boxsize" sidelength have the same displacement components.
Args:
partial_dx:
2D array of partial input field derivatives d/dx
partial_dy:
2D array of partial input field derivatives d/dy
partial_dt:
2D array of partial input field derivatives d/dt
Returns:
- 2D array of displacements in the x-direction
- 2D array of displacements in the y-direction
"""
# (a) Generate lists of subboxes over which velocity is constant
dx_boxed, box_weights = self._make_subboxes(partial_dx)
dy_boxed, _ = self._make_subboxes(partial_dy)
dt_boxed, _ = self._make_subboxes(partial_dt)
# (b) Solve optical flow displacement calculation on each subbox
velocity = ([], [])
for deriv_x, deriv_y, deriv_t in zip(dx_boxed, dy_boxed, dt_boxed):
# Flatten arrays to create the system of linear simultaneous
# equations to solve for this subbox
deriv_x = deriv_x.flatten()
deriv_y = deriv_y.flatten()
deriv_t = deriv_t.flatten()
# deriv_xy must be float64 in order to work OK.
deriv_xy = (np.array([deriv_x, deriv_y], dtype=np.float64)).transpose()
# Solve equations for u and v through matrix inversion
u, v = self.solve_for_uv(deriv_xy, deriv_t)
velocity[0].append(u)
velocity[1].append(v)
# (c) Reshape displacement arrays to match array of subbox points
newshape = [
int((self.shape[0] - 1) / self.boxsize) + 1,
int((self.shape[1] - 1) / self.boxsize) + 1,
]
umat = np.array(velocity[0], dtype=np.float32).reshape(newshape)
vmat = np.array(velocity[1], dtype=np.float32).reshape(newshape)
weights = box_weights.reshape(newshape)
# (d) Check for extreme advection displacements (over a significant
# proportion of the domain size) and set to zero
self.extreme_value_check(umat, vmat, weights)
# (e) smooth and reshape displacement arrays to match input data grid
umat = self._smooth_advection_fields(umat, weights)
vmat = self._smooth_advection_fields(vmat, weights)
return umat, vmat
[docs]
@staticmethod
def _zero_advection_velocities_warning(
vel_comp: ndarray, rain_mask: Tuple[int, ...], zero_vel_threshold: float = 0.1
) -> None:
"""
Raise warning if more than a fixed threshold (default 10%) of cells
where there is rain within the domain have zero advection velocities.
Args:
vel_comp:
Advection velocity that will be checked to assess the
proportion of zeroes present in this field.
rain_mask:
Array indices where there is rain.
zero_vel_threshold:
Fractional value to specify the proportion of zero values
that the advection field should contain at a maximum.
For example, if zero_vel_threshold=0.1 then up to 10% of
the advection velocities can be zero before a warning will be
raised.
Warns:
Warning: If the proportion of zero advection velocities is
above the threshold specified by zero_vel_threshold.
"""
zeroes_in_rain = np.count_nonzero(vel_comp[rain_mask] == 0)
rain_pixels = vel_comp[rain_mask].size
if zeroes_in_rain > rain_pixels * zero_vel_threshold:
msg = (
"{:.1f}% of rain cells within the domain have zero "
"advection velocities. It is expected that greater "
"than {:.1f}% of these advection velocities will be "
"non-zero.".format(
zeroes_in_rain * 100.0 / rain_pixels, (1 - zero_vel_threshold) * 100
)
)
warnings.warn(msg)
[docs]
def process_dimensionless(
self,
data1: ndarray,
data2: ndarray,
xaxis: int,
yaxis: int,
smoothing_radius: int,
) -> Tuple[ndarray, ndarray]:
"""
Calculates dimensionless advection displacements between two input
fields.
Args:
data1:
2D input data array from time 1
data2:
2D input data array from time 2
xaxis:
Index of x coordinate axis
yaxis:
Index of y coordinate axis
smoothing_radius:
Radius (in grid squares) over which to smooth the input data
Returns:
- Advection displacement (grid squares) in the x direction
- Advection displacement (grid squares) in the y direction
"""
# Smooth input data
self.shape = data1.shape
self.data1 = self.smooth(
data1, smoothing_radius, method=self.data_smoothing_method
)
self.data2 = self.smooth(
data2, smoothing_radius, method=self.data_smoothing_method
)
# Calculate partial derivatives of the smoothed input fields
partial_dx = self._partial_derivative_spatial(axis=xaxis)
partial_dy = self._partial_derivative_spatial(axis=yaxis)
partial_dt = self._partial_derivative_temporal()
# Calculate advection displacements
ucomp, vcomp = self.calculate_displacement_vectors(
partial_dx, partial_dy, partial_dt
)
# Check for zeros where there should be valid displacements
rain_mask = np.where((data1 > 0) | (data2 > 0))
for vel_comp in [ucomp, vcomp]:
self._zero_advection_velocities_warning(vel_comp, rain_mask)
return ucomp, vcomp
[docs]
def process(self, cube1: Cube, cube2: Cube, boxsize: int = 30) -> Tuple[Cube, Cube]:
"""
Extracts data from input cubes, performs dimensionless advection
displacement calculation, and creates new cubes with advection
velocities in metres per second. Each input cube should have precisely
two non-scalar dimension coordinates (spatial x/y), and are expected to
be in a projection such that grid spacing is the same (or very close)
at all points within the spatial domain. Each input cube must also
have a scalar "time" coordinate.
Args:
cube1:
2D cube that advection will be FROM / advection start point.
This may be an earlier observation or an extrapolation forecast
for the current time.
cube2:
2D cube that advection will be TO / advection end point.
This will be the most recent observation.
boxsize:
The side length of the square box over which to solve the
optical flow constraint. This should be greater than the
data smoothing radius.
Returns:
- 2D cube of advection velocities in the x-direction
- 2D cube of advection velocities in the y-direction
"""
# clear existing parameters
self.data_smoothing_radius = None
self.boxsize = None
# check input cubes have appropriate and matching contents and dimensions
self._check_input_cubes(cube1, cube2)
# get time over which advection displacement has occurred
time_diff_seconds = self._get_advection_time(cube1, cube2)
# if time difference is greater 15 minutes, increase data smoothing
# radius so that larger advection displacements can be resolved
grid_length_km = calculate_grid_spacing(cube1, "km")
data_smoothing_radius = self._get_smoothing_radius(
time_diff_seconds, grid_length_km
)
# fail if self.boxsize is less than data smoothing radius
self.boxsize = boxsize
if self.boxsize < data_smoothing_radius:
msg = (
"Box size {} too small (should not be less than data "
"smoothing radius {})"
)
raise ValueError(msg.format(self.boxsize, data_smoothing_radius))
# convert units to mm/hr as these avoid the need to manipulate tiny
# decimals
cube1 = cube1.copy()
cube2 = cube2.copy()
try:
cube1.convert_units("mm/hr")
cube2.convert_units("mm/hr")
except ValueError as err:
msg = (
"Input data are in units that cannot be converted to mm/hr "
"which are the required units for use with optical flow."
)
raise ValueError(msg) from err
# extract 2-dimensional data arrays
data1 = next(cube1.slices([cube1.coord(axis="y"), cube1.coord(axis="x")])).data
data2 = next(cube2.slices([cube2.coord(axis="y"), cube2.coord(axis="x")])).data
# fill any mask with 0 values so fill_values are not spread into the
# domain when smoothing the fields.
if np.ma.is_masked(data1):
data1 = data1.filled(0)
if np.ma.is_masked(data2):
data2 = data2.filled(0)
# if input arrays have no non-zero values, set velocities to zero here
# and raise a warning
if np.allclose(data1, np.zeros(data1.shape)) or np.allclose(
data2, np.zeros(data2.shape)
):
msg = (
"No non-zero data in input fields: setting optical flow "
"velocities to zero"
)
warnings.warn(msg)
ucomp = np.zeros(data1.shape, dtype=np.float32)
vcomp = np.zeros(data2.shape, dtype=np.float32)
else:
# calculate dimensionless displacement between the two input fields
ucomp, vcomp = self.process_dimensionless(
data1, data2, 1, 0, data_smoothing_radius
)
# convert displacements to velocities in metres per second
for vel in [ucomp, vcomp]:
vel *= np.float32(1000.0 * grid_length_km)
vel /= time_diff_seconds
# create velocity output cubes based on metadata from later input cube
ucube = iris.cube.Cube(
ucomp,
long_name="precipitation_advection_x_velocity",
units="m s-1",
dim_coords_and_dims=[
(cube2.coord(axis="y"), 0),
(cube2.coord(axis="x"), 1),
],
aux_coords_and_dims=[(cube2.coord("time"), None)],
)
vcube = ucube.copy(vcomp)
vcube.rename("precipitation_advection_y_velocity")
return ucube, vcube